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What Is the State of a Hydrogen Atom Leaving a
Stern ± Gerlach Interferometer?
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We discuss experimental results on Stern±Gerlach interferometry with atoms.
After a theoretical approach suited for fast atoms, we discuss elementary
experiments on the preservation of atomic coherence. Then we examine the action
of the interferometer as producing atoms with new properties, beaded atoms, and
their radiative properties.

1. HISTORY AND MOTIVATIONS

1.1. Brief Introduction

Atom interferometry became popular in the 1990s, about 20 years after

Sokolov’ s first experiment (Sokolov, 1973), mainly because most techniques

of molecular beams and their control by microstructures or laser light became

available at that time (Baudon, 1998). The Stern±Gerlach effect, on its own,
had been quite disregarded, except by Bloom (1962), because of the remark-

able efficiency of molecular beam resonance techniques (Rabi, 1937). With

neutron beams, the first related experiment of magnetic interferometry was

performed in 1938 (Frisch, 1938) and a revival of that work appeared and

grew in the 1980s mainly by the neutron spin echo technique (Mezei, 1986).
Two groups are currently using Stern±Gerlach interferometry (SGI) with

atoms, one in Villetaneuse (Robert, 1991, 1992; Lawson, 1996; Mathevet,

1997) and more recently another one in Heidelberg (DeKieviet, 1995).
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Basically Stern±Gerlach interferometry makes use of the spin compo-

nents individually. Quantum interferometry is rooted in the superposition

principle. This principle of superposition of states has to be clearly separated
from the representation of one state by an expansion over a basis set, even

if the formulas look the same. Consequently the definition of the quantization

axis is of particular importance, especially when this axis is not fixed, impos-

ing on the spin components dynamical or ª activeº transformations. Two

limiting situations may arise: (i) the direction of the magnetic field (the actual

one or the effective one) is slowly varying, which results in an adiabatic
following of the spin components, each corresponding to one arm of the

interferometer; (ii) the field direction rotates rapidly, which leads to a nonadia-

batic evolution of the spin components (Majorana transition). Such zones are

key elements of the interferometer since they transform one incoming Zeeman

state, referred to some initial adiabatic quantization axis, into a coherent

superposition of Zeeman states referred to a new final adiabatic quantization
axis. This transformation can be readily described by the use of Wigner

rotation matrices. It is worth noting that the resulting superposition of states

is not a simple theoretical artefact insofar as the quantization axis cannot be

arbitrarily chosen, but is governed by the dynamics.

In short, an SGI works as follows (see Fig. 1): a collimated beam of
atoms is first spin polarized, then a first diabatic transition zone (Majorana

zone) separates the spin components defined on the adiabatic quantization

axis of the interferometer core, each spin component defining an arm of the

Fig. 1. Schematic diagram of the Stern±Gerlach atomic interferometer with its optical analogue.

P is a polarizer, M and M8 are superposition regions at either extremity of the interaction

region, A is an analyzer, and D is the detector. In the optical analogue the interaction zone

consists of a birefringent medium of indices n1 and n2 corresponding to the polarization

eigenvectors 1 and 2.
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interferometer. Then, a second Majorana transition zone closes the interferom-

eter with respect to the spin variable. The separated arm evolutions are

converted for each spin component on the new quantization axis. A polarizer
selects one of these, whose population reflects the whole history of the atom

in the device. Then the signal on the detector exhibits fringes when one of

the experiment’ s parameters is scanned.

What are the salient characteristics of an SGI? (i) It makes use of the

spatial quantization of spin. It acts on real space spinors and fully degenerate

structures. (ii) Most of the field configurations are quasistatic fields (without
any propagation effects) and so can be considered as well-defined classical

fields. (iii) Its main principle relies on the entanglement of variables (elec-

tronic, spin, and center-of-mass motion) and the projection onto the spin

variable reveals the phase properties of the other variables. (iv) It can operate

at any atomic velocity.

1.2. Motivations

The SGI’ s characteristics allow one to study atomic beam coherence

properties. A theoretical approach to this problem is given in Section 2. The

main point is the separation of the atomic beam properties from those related

to the interferometer device itself. In other words, the difficult choice is that
of the wave packet to be associated with the atom beam, whose parameters

include necessarily the geometric boundary conditions of the experiment,

and which precludes the representation of these atoms by infinite plane waves.

This aspect of the wave packet properties will be illustrated in Section 3.

The next step is to test whether these wave packet properties can be stored

in the atomic beam. This will mean that under special circumstances it will
be possible to exhibit unexpected properties. As an illustration in Section 4

we present a naive tentative experimental investigation of these properties

through the study of the angular dependence of the spontaneous decay of

atoms leaving the interferometer (beaded atoms).

2. THEORETICAL ANALYSIS OF SGI USING FAST ATOMS

2.1. Wave Function Computation

To solve the wave function computation problem when using fast hydro-

gen atoms, we have to face two simultaneous problems. (i) That of the

spin evolution in a nonuniform magnetic field, correctly described thanks to
Schwinger (1937). (ii) The scattering of atoms by a macroscopic size potential

region, which is a typical problem in atom interferometry; this problem can

be reduced in our experimental configuration (fast atoms, EKin 5 0.5 eV, and

very small magnetic energy, about a few neV) to that of atomic scattering
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in high-energy approximation (Glauber, 1959), which makes use of eikonal

and slowly varying envelope approximations.

In the semiquantal Glauber method, the adiabatic basis set is chosen as

a plane wave symmetry expansion. The phase shifts are computed along the

rays corresponding to incoming plane waves. This simplifies the resolution

of the spin evolution problem for each component, because the rays and the

magnetic field they cross are defined ab initio. One has just to sum up all

the terms accumulated by each plane wave in order to get the wavefront

distortion, which, in that picture, will reflect (once converted in terms of

outgoing plane waves) the motion of the atoms at the output of the device

(Fig. 2).

The use of plane waves makes the quantum potential terms vanish. The

phase shift in that case is directly given in terms of the classical Hamilton±

Jacobi solutions. We briefly review this method.

To solve the SchroÈ dinger equation

i " - t c 5 (T 1 V ) c (2.1)

with the de Broglie parametrization for c ,

c (r, t) 5 a(r, t) exp[i (S(r, t))/ " ] (2.2)

(a and S are real functions), we get the system (M is the mass of the particle)

5 - tS 1
1

2M
( = S)2 1 V 2

" 2

2M

D a

a
5 0

- ta 1
a

2M
D S 1

1

M
= S ? = a 5 0

(2.3)

If we restrict ourselves to a constant function a, then D S 5 0. We get modulated

plane wave solutions, which are exact solutions at least for potentials of

the form V(r, t) 5 g(t) ? r 1 v (t).
However, in scattering problems, a difficulty arises because of the r

dependence of the potential energy term. As shown by Glauber, when V is

small compared to the incoming kinetic energy, it is possible to neglect

reflection terms due to the rapid variations of the potential, i.e., backscattering

terms and coupling between the incoming plane waves. Distorted plane wave

solutions are constructed from incoming plane wave solutions [take V 5 0

and a 5 const in (2.3)] modulated by a slowly varying envelope,

c (r, t) 5 [a (r, t)e i w (k,t)/ " ] c P(k; r, t) (2.4)
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Fig. 2. (a) Schematic representation of the scattering process showing the incident wave packet,

the scattering potential V, the outgoing distorted wave packet, and the detector domain r (r, t;

r0, t0) defined for each point (r0, t0). (b) Plane wave representation of the scattering process

with two wave vectors k, k8 and their associated rays converging at the detector position.
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where the real functions a and w slowly vary at the wavelength scale. The

incoming plane wave is

c P(k, r, t) 5 e ikr 2 i " (k2/2M)t (2.5)

Neglecting higher order terms, a and w obey the equations

5 - t w 1
" k

M
? = w 1 V (r, t) 5 0

- ta 1
" k

M
? = a 5 0

(2.6)

Then the perturbation in the wave moves with the group velocity vu 5 " k/M,

and = and r can be reduced to

H = 5 u - u 1 = ’

r 5 (r ? u)u 1 [r 2 (r ? u)u] 5 uu 1 r ’
(2.7)

with r ’ being the impact parameter. The amplitude is

a (r, t) 5 a (r ’ , u 2 vt) (2.8a)

Depending on the chosen integration variable, the phase shift can take two
forms:

5 w (v, u 2 vt, t; r ’ ) 5
1

v #
u

V (s) ds

w (v, u, t 2
u

v
; r ’ ) 5 #

t

V (s) ds

(2.8b)

The second form shows that it is possible to make w independent of v, giving

rise to nondispersive effects (Nic Chormaic, 1994).

All the preceding expressions have to be modified in order to take into
account the spin multiplicity. To get straightforward expressions, we assume

that all the rays are subjected to the same Majorana transitions (same Wigner

rotation matrix) and that their evolution in between follows the same quantiza-

tions axis. The validity of these points will be discussed in Section 3. With

these restrictions the most general polarized incoming wave takes the form

c in
a (r, t) 5 # d 3k C a (k) c P(k, r, t) (2.9)

where a is the spin component with respect to the quantization axis of the

polarizer. Then through the device, each plane wave is distorted and the two

Majorana zones (D a b and D 8b g Wigner rotation matrices) entangle the evolu-
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tion of the magnetic components. Then the outgoing g -polarized wave is

written

c out
g (r, t)

5 # o
b

d 3k C a (k) D a b (r, t) c P(k; r, t)e i w (k, b ;r,t)/ " a (k; r, t)D 8b g (r, t) (2.10)

The plane wave expansion of this wave is

c out
g (r, t) 5 # d 3l D g (l) c P(l; r, t) (2.11)

Neglecting the (r, t) dependence in the Wigner rotation matrices, the compari-

son of (2.10) and (2.11) leads to

D g (l) 5 o
b # d 3 k C a (k)D a b D 8b g e 2 i " [(k2 2 l2)/2M]tb (k, l; b , t) (2.12)

where

b (k, l; b , t) 5 # d 3r

(2 p )3 a(k; r, t)e i[(k 2 l)r 1 w (k, b ;r,t)/ " ]

is the entanglement term, depending on the form of w . It can be expressed

as a series [e.g., a series of Bessel functions, for a potential sinusoidal in r
and t; see Mathevet (1998)].

Assuming that the detector is sensitive to plane waves, the coherent part

of the signal is

s 5 # d 3l | D g (l) | 2

We introduce the statistical averaging effects by setting C a (k) [ C a (k, a),
a being a set of parameters distributed with the probability density r (a). Then

the final signal S is

S 5 # da r (a) s (a)

The set of parameters a is related to the beam velocity distribution (or to a

partial magnetic polarization). This will reduce the fringe contrast (obtained

by the scan of one of the experimental parameters) in an inhomogeneous
way. Other losses of contrast have a homogeneous origin (they are related

to amplitudes, not to intensities). They define the ª finesseº of the interferome-
ter or the homogeneous width. The ingredients in D g (l) are related to the

perturbation of the wave induced by the interaction. This is a general feature

of wave equations (Eckart, 1948): whatever the wave equation is, its amplitude

perturbation follows a SchroÈ dinger-like equation. To be able to test the wave
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itself, we need to know how to measure the phase velocity. In its complex

form, quantum mechanics does not show a way to succeed in this direction.

We have not used here a direct calculation using density operator tech-
niques in spite of the fact that they are convenient to describe coherence

properties. The reason is that in the continuum case it is much easier and

more pedagogical to compute this operator from the wave function and then

make a statistical averaging.

3. EXPERIMENTAL ILLUSTRATIONS

Our experiment uses a beam of metastable hydrogen atoms (spin 1)

whose velocity distribution is peaked at 10 km/s. The experimental scheme

has been described in detail elsewhere (Robert, 1992) and is shown in Fig.

3. Here we present results on the longitudinal Stern±Gerlach effect, revealed
by time of flight, and we discuss the problem of coherence through the

Humpty Dumpty effect (Schwinger, 1989).

3.1. Longitudinal Stern ± Gerlach Effect

For a one-dimensional problem (static transverse magnetic field profile)

and assuming a perfect magnetic state preparation and analysis, one gets

w (k, r, t) 5
1

v # V b (u) du 5
A b "

k
(3.1)

b 5 e iA b /k # d 3r

(2 p )3 a (r 2
" k

m
t)e i(k 2 l)r (3.2)

Fig. 3. Scheme of the apparatus. H2 1 k 1 a, Metastable hydrogen source; P, A, polarizing and

analyzing magnetic fields; BP 1 TP and BA 1 TA, slow and fast commutators of polarization

guiding fields; C, phase device supplied by the current iB; MS, magnetic screens and shields;

F 1 W 1 CEM, metastable hydrogen detector (F is the quenching electric field, W is the

MgF2 window, and CEM is the channeltron electron multiplier).
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The function a is unknown: it expresses the synchronization of the atomic

wave function with the detector. For simplicity we choose it as defining one

velocity (by time of flight). Then

b 5 e iA b /k d (k 2 l) d (k 2 k0) (3.3)

Using this expression in (2.12), one gets

D g (l) 5 o
b

C a (l)D a b D 8b g e iA b /l d (l 2 k0) (3.4)

s 5 | C a (k0) ) 2 Z o b D a b D 8b g e iA b /k0 Z
2

(3.5)

Finally

S 5 # da r (a) | C a (a, k0) | 2 Z o b D a b D 8b g e iA b /k0 Z
2

(3.6)

where r (a) takes into account the velocity incertitude in the experimental

realization of the time of flight. Figure 4 shows the results obtained in our
experiment. Note that, if t is the time of flight, then

Fig. 4. Example of a time-of-flight experiment. Open circles: TOF with a phase shift equal to zero.

Full circles: TOF with a phase shift of 2p for the most probable velocity corresponding to a current

of 1 A in the phase device. Notice in the latter the linear time dependence of the oscillations.
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S ( t ) 5 | C a ( t ) | 2 Z o b D a b D 8b g e
iA8 b t Z

2

(3.7)

which means that the argument of the oscillations seen in Fig. 4 is proportional

to t .

3.2. Loss of Coherence, Humpty Dumpty Effect

The preservation of spin coherence through a Stern±Gerlach interferom-

eter was theoretically studied by Schwinger and co-workers (1988). The main

idea is to cut the central region into two successive zones and try to balance

the effect of the first zone by that of the second. We realized that scheme as
described in Fig. 5 (Nic Chormaic et al., 1994).

A detailed computation can be found in Lawson-Daku (1997) that

fits fairly well with the experimental results. The analysis presented in

Section 2 shows that there exists a coherent effect with respect to the

transverse direction, resulting in a ª coherentº loss of the fringe contrast.
The rays have histories depending on the impact parameter. Actually both

the Majorana transition coefficients and the dephasing terms depend on

the impact parameter as soon as the magnetic field profile is transversely

inhomogeneous. As a result, the coherence properties are very sensitive

to transverse field gradients. Now, if one expresses the 1D signal as a

function of the magnetic field magnitude, assuming that the detector is
permanently open, one gets

b 5 e iA b /k d (k 2 l) (3.8)

and then

S (A ) 5 # da r (a) # d 3l | C a (a, l) | 2 Z o b D a b D 8b g e iA b /l Z
2

Here | C a (a, l) | 2 is due to the averaging over the transverse section of the

interferometer and corresponds to the width for the 1D expression of the

signal. We have shown that it is possible to separate the longitudinal r (a)

contribution from the transverse one | C a (a, l) | 2 by improving the velocity

selection. Figure 6 shows that the interferometer fringe resolution has an

intrinsic limitation. This limitation is due to the inhomogeneity of the magnetic
field profile. With an improved field configuration we have shown (Fig. 7)

that it is possible to shift the central fringe obtained with the broad velocity

distribution over a range of magnetic field broader than that defined by the

inhomogeneous width.
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Fig. 5. (a) Schematic representation of the two frames, CV1 and CV2, showing the directions

of current flow which were considered and the resulting transverse magnetic field in the 1 y

or 2 y direction. (b) The shaded area represents the gradients when i1 and i2 are flowing in

opposite directions. (c) A schematic representation of the different spin evolutions which are

equivalent to adiabatic and diabatic transitions. In each of these diagrams z is the direction of

propagation of the atoms.

This effect reveals that the loss of coherence in an interferometer is

strongly dependent on the number of variables that are entangled because
each of them affect the phase definition. To get ª perfectº fringes one must

be able to achieve a clean separation between the variables involved in the

phase and the other ones. This would allow one to realize interferences

independently of the object size.
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Fig. 6. Interference patterns obtained using the single-frame interferometer for three different

velocity selections: (a) d v /v 5 13%, vav 5 9.4 km/s, (b) d v /v 5 20%, vav 5 4.5 km/s, (c) d v /

v 5 40%, vav 5 6.9 km/s. The current in the frame is scanned from 2 400 to 1 400 mA. Full

line: envelope for the velocity distribution assuming a constant phase shift.
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Fig. 7. Interference pattern obtained for the improved double-frame configuration by scanning

i1 from 2 1550 to 1 1550 mA while keeping i2 fixed.

4. OPTICAL EFFECTS. BEADED ATOMS

4.1. Beaded Atoms

If one looks at formula (2.10) in terms of virtual interfering sources,

one has to express the outgoing wave function in terms of a summation over

displacement operators acting on the incident wave function. However, in

order to achieve this and because of the wavenumber dispersion (except for
topological or geometrical nondispersive phases) (Nic Chormaic, 1994) one

has to treat the problem using wave packets rather than infinite plane waves.

As a matter of fact, in order to act on a wave, we have to perturb it. Therefore,

even at the lowest order of perturbation, this leads us to consider a wave
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packet within a restricted interval in space and time. For instance, in the case

of a scattering problem, even the so-called incident plane wave has to be a

wave packet having a restricted extension in space. That is why wave packets

are implicit in most of that kind of work (Joachain, 1979).

This point has, of course, to be used in harmony with the strong rule

that transition probabilities are defined with respect to wave-packet expansion

components, as shown by the transition of unresolved waves to resolved

waves (Eckart, 1948). The remaining question is how to determine what kind

of properties can be stored into a wave in order to attribute them to a

corresponding atom, provided that this has any significance in a wave picture.

The general Fourier expansion of the solution of our problem (2.10)

and (2.11) shows through (2.12) that in the case where

b (k, l, b , t) 5 d (k 2 l)e i u (k, b ) (4.1)

the D (l) factor is for each b in a 1±1 correspondence with C (k). This means

that there is no net force acting on each spin term and that the output term

is on the same momentum-energy shell as the incoming one (longitudinal

SG effect). Under these restricted circumstances the arguments of the wave

Fourier components can be written

k ? r 2
" k2

2M
t 1 u (k, b ) 5 k ? (r 2 d b r) 2

" k2

2M
(t 2 d b t) (4.2)

where d b r and d b t are constructed in order to satisfy the equality. There are

two limiting choices: (i) when all the dephasing effect is on r: ( D b r); (ii)

when the whole effect is reported on t: ( D b t).

We assume that the quasi-plane-wave approximation is not too bad

to represent what has to be called ª an atom.º The ª passing throughº the

interferometer transforms each atom amplitude into a sum of atom amplitudes

phase shifted by a factor exp(ik ? D b r). This D b r factor can thus be viewed

as a wave modulation term or as a wave packets center splitting term, giving

rise to a beaded atom by analogy with a necklace (Miniatura, 1991). In our

opinion, this phraseology is relevant only if it can lead to ª newº properties

for the atoms. The magnitude of the chosen magnetic field intensity determines

D b r in the interferometer, and an easy numerical calculation shows that for

hydrogen metastable atoms experiencing a homogeneous magnetic field B

acting over a length L, | D b r | 5 D b z is given by

k D b z 5 b
g m BBL

v
5 F t (4.3)
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or

D b z 5 b
g m BBL

" kv
5 b

g m BBL

Mv2 5 G t 2 (4.4)

where t is the time of flight over the length L, and F and G are constants.
Therefore, the beaded atom properties will be clearly separated from the other

wave-modulation properties only in a time-of-flight measurement exhibiting

periodic oscillation as a function of t 2.

4.2. Spontaneous Emission of Beaded Atoms

In a naive way, such a beaded atom could be seen in a classical analogy

as an array of (correlated) antennas which should exhibit remarkable electro-
magnetic properties. We have tested the effect of a splitting of the order of

the optical wavelength. This corresponds to a B field magnitude of the order

of 1000 G. In Fig. 8 we present a set of experimental results. One can see

oscillations whose periodicity is quite different from that of Fig. 4. Another

feature is the signal dependence on the observation direction, which seems

to reflect classical properties of the radiation emitted by the antenna array.
From this point of view, all these results seem very clear. However, they

raise the important question of the correct interpretation. Indeed, up to now,

spontaneous emission calculations of moving atoms have not been able to

reproduce the results. The main reason is the inclusion of recoil terms in the

theory of spontaneous emission, which completely destroys the correlation
among the emitters. As a result all ª wave packet effectsº disappear (Cohen,

1992, Steuernagel, 1996). An analysis of these wave packet effects in atom±

light interaction is in progress (Stoop, 1997; Pumares, 1997). Nevertheless,

the theory is not yet able to account for the experimental modulations that

we have observed. One point is to be noticed: none of these calculations has

used the improved form computed in the canonical approach that includes
the so-called RoÈ ntgen terms (Baxter, 1993; Lembessis, 1993). Their structure

entangles dipole terms with center-of-mass and electromagnetic terms; never-

theless, it is hard to say if such terms are able to give a correct result without

any further detailed calculations.

5. CONCLUSION

Atom interferometry is situated on the coherent side of the decoherence
problems. We have learned that under our experimental conditions, which

are not too restrictive, the interference ability of a quantum system is strongly

related to the degree of entanglement among its master variables. When all

of them are fairly controlled, we can obtain patterns with high contrast as
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Fig. 8. Time-of-flight spectra in the presence of a strong longitudinal magnetic field B i . Open

circles: TOF spectra with B i 5 0 normalized such that the maximum value is 1. Full circles

and full lines: difference D between spectra without and with B i . Broken curve: calculation of

Young’ s holes. Panels (a), (b), and (d) were obtained with * B i dz 5 1000G ? cm, panel (c) with

* B i dz 5 2000 G ? cm.
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shown in Fig. 4. If not, the wavefront distortions, combined with classical

statistical averaging effects, induce decoherence due to the inhomogenei ties

in the entanglement. To do science fiction, one could even imagine making
interferences with macroscopic objects. It only requires really separating a

set of variables from all the others, namely isolating the phase carrier variables

from all the other variables. The relevance of the concept of ª beaded atomsº

remains an open question. All this reveals at the same time the difficulty,

but also the versatility of tailoring quantum phases by atom interferometry.
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